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Percolation of finite-sized objects on a lattice
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We study the percolation dinite-sizedobjects on two- and three-dimensional lattices. Our motivation
stems, on one hand, from some recent interesting experimental results on transport properties of impurity-
doped oxide perovskites, and on the other hand from the theoretical appeal that this problem presents. Our
system exhibits a well-defined percolation threshold. We estimate the size of magnetic polarons, believed to be
the carriers of the above-mentioned transport. We have also obtained two critical exponents for our model,
which characterize its universality clag§1063-651X98)06801-9

PACS numbes): 64.60.Ak, 64.60.Fr, 71.38.i

Over the last couple of decades percolation theory hag/e now say that such an object is allowed to percolate in the
generated lot of interest, both from theoretical as well adattice only if none of itsn(r) sites overlaps with any of the
applicational points of vieWwl—12]. Percolation is an impor- disallowed sites. We then study the standard percolation
tant model exhibiting a second order phase transition witlproblem for such an object.
the associated critical exponefis4,5. It has also been suc- One can also study the following complementary prob-
cessfully applied to transport and phase transitions in severgm. Let us place obstacles of linear sizeontainingn(r)
physical systems in the presence of voids or impuritiessites with a suitably defined center at random locations with
[1,6,7,11,12 In this paper we investigate the percolation probability g. We now treat the remaining sites as allowed
mechanism of objectwith finite spatial extenbn a lattice. gpg study the standard site percolation problem for point

To the best of our knowledge this problem has not beerypiects. It is easy to see that the two problems are essentially

studied so far. or thi . or the follow equivalent under the following conditions: firstly, the centers
We are motivated for this type of study for the following ¢ finite-sized objects or obstacles lie on a site; secondly,

g’?i?)?]nSﬁelzgsr:iyé;hgriﬂzgalt:r}nr\]/ae?stlin;etir;s]gr;g t?gzzlcgrlt arr’g“t'he objects or obstacles themselves have the same symmetry
orties .of Fe-do (Fe)d Lt MNO gceramics[lS] phavg P3s that of the underlying lattice; and finally, the obstacles are
b 45 8.2 3 allowed to overlag17]. Numerically it is easier to study the

h [ ligh he role of ic pol h , : S
;rgoggitlgfggetzngg?e :tg1n4£1eqrolﬁ ctJh gn i;gtgggctﬁ g ia:reor;gr: Satproblem with obstacles, which we use for calculations in this

occupy the Mn sites. There is a jump in the resistivity of thePaper: ) )
system by a factor of about 80 at about 4% concentration of W& NOW present our main resulf28]. We consider a
the Fe ions. Observations of isomer shift indicate that Fe ion&v0-dimensional square lattice and a three-dimensional
are in the 3 state only and hence cannot be expected to acgimple cubic Iat'Flce for_our _study. We restrict oursel\{es to
as a double exchange partner for the’¥Mons. Thus the Fe the cases of objects with circular symmetry in two dimen-
impurities will be prohibiting the transport of polarons. Us- sions and spherical symmetry in three dimensions, witis
ing this physical picture the jump in resistivity may be inter- radius and center on a lattice site. We have used periodic
preted as a percolation transition for the polarons. Secondlygoundary conditions for our systefotherwise finite-sized
our problem has its own theoretical appeal, which merits @bjects are ill defined at and near the lattice bounddpyi-
thorough study. It is interesting to ask whether finiteness oferent linear sized of the lattice are considered: for two
size has any effect on critical exponents and hence on ungimensions, we have takenL=10,20,40,80,160,320,
versality classes. Finally, our model may have interestind40,1280,2560, and 5120, and for three dimensions,
application in the transport problem of vehicles of differentL=10,20,40,80,160, and 250. We have varied probabijity
sizes in a randomly grown habitation. The last problem had¥etween 0 and 1, and also used different values of the radius
an additional feature that not only the objects themselves but (first column of Table | shows various values for two-
also the obstacles have finite sizes. We shall see that in sonslémensional latticg starting with the nearest neighbor case
cases the two problems can be mapped into each other. (r=1 lattice uni}. Data are averaged over many realizations
Our observations bring out a well-defined percolationof randomly generated disallowed sites for each valug df
threshold probability for our model in both two and threeis to be noted that no exact analysis is possible for our model
dimension. We have analyzed our results using the ansatz of two or three dimensions, though some exact results can be
scaling due to the finite lattice size. We also estimate somebtained for one-dimensional lattice and Bethe latfit@].
critical exponents near the threshold. We define eclusteras a group of sites with the following
The model we consider is as follows. We take a latticeproperties: centers of the percolating objects can be placed
and randomly disallow its sites with a probability We  on these sites, and these sites are connected through their
define our percolating object as a spatially extended entity ofiearest neighbors. We call a lattipercolatingfor a givenqg
linear dimensiorr (in lattice unitg consisting ofn(r) sites. andr when there exists at least one cluster spanning the
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TABLE I. The quantitiesn(r), the number of sites in an object,
dc, the threshold probabilityp(q.,r), the probability for the al-
lowed sites for the center of an object @t, and 8 and y, the . \
critical exponents, for different radii in a two-dimensional square B T
lattice. Error margins for., B, andy are+0.0001, =0.01, and
+0.1, respectively. Values for point objeat=£0) are from Ref.
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[1].

r n(r) de p(dc.r) B Y

0 1 0.5928 0.14 2.39
1 5 0.1153 0.5420 0.14 2.30
V2 9 0.0868 0.4417 0.14 2.29
2 13 0.0538 0.4873 0.15 2.22
5 21 0.0406 0.4188 0.15 2.28
J8 25 0.0358 0.4020 0.14 2.39

lattice end to enda so-called “infinite cluster). We define

threshold probability g such that foig> g, the lattice ceases
to be percolating. It is obvious thaf, is a function of the

radiusr.

Let F(g) denote the fraction of percolating realizations
(those that support a spanning clugt&igures 1 and 2 show,
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FIG. 2. F(q) vs q plot for a three-dimensional simple cubic
lattice, forL=10, 20, 40, 80, 160, and 250, with=1. Realizations
aken are 100 000 fot.=10, 30000 forL=20, 10 000 forL

respectively, for two and three dimensions, the variation 0t 40 2000 forL =80 200 forl = 160. and 10 fol = 250.
F(q) with the probabilityq, for different lattice sizes and ' ’ '

radiusr =1. Both plots exhibit an approach towards a stepas | increases toe. This behavior remains essentially the

function of the form

F(@)=1 - for 4=t (1)
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FIG. 1. Variation of the percolating fractioR(q) is plotted
against the probability), for lattice sizesL =10, 20, 40, 80, 160,
320, 640, 1280, and 5120, and with radius1 (lattice unib, for a
two-dimensional square lattigglot for L=2560 is not shown for

the sake of clarity Data are averaged over 100 000 realizations for

L=10, 50 000 forL=20, 20 000 forL=40, 10 000 forL=80,
5000 for L=160, 2000 forL=320, 1000 forL=640, 500 for
L=1280, and 50 foL. =5120.

same for all other values of that we have considered. The
data of both Fig. 1 and Fig. 2 are seen to obey a finite-
(lattice) size scaling relation, near the threshajd, of the
type
F(g,L)—L"G(L?q—qc]), 2

wherea andb are the scaling exponents. We have seen that
all the graphs of Fig. 1 collapse onto a single function, which
is almost a step function of the forft), and the same is true
for the graphs of Fig. 2. This confirms the existence of scal-
ing behavior(2). We have obtained the exponemtsb for
various radiir in both dimensions. As increases from 1 to
V8, a decreases monotonically from 0.8 to 0.7 for a two-
dimensional square lattice, whereas for a three-dimensional
simple cubic lattice it reduces from 1.17 to 0.96; the value of
b remains zero for alt in both cases. We get an estimate of
g. using this scaling scheme, as—«. In the third column
of Table | we list these values for all finite for the two-
dimensional lattice. There is one more way to obtginas
explained below. The graphs of Fig. 1 and Fig. 2 are ap-
proximately linear for values df(q) between 0.3 and 0.6.
We consider thej intercepts of these lines. The extrapolated
value of this intercept as 1/~ 0 yieldsq,. . These values are
almost identical to those listed in Table I, thereby exhibiting
internal consistency of our calculations.

One can calculate the probabilipythat a given lattice site
is allowed to be the center of a percolating object. Quite
simply, the required probability is

p(g,r)=(1-aq)"", 3

whereq is our original probability anei(r) is the number of
lattice sites contained in the object. The second column of
Table | shows the values ofr) for all r, in two dimensions.
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TABLE II. The quantitiesn(r),q.,p(dc,r), for differentr val- 1.0 T T T T
ues in a three-dimensional simple cubic lattice. Error margirgfor
is =0.0001.p(q.,r) for r=0 is from Ref.[1].
L=10 -
- L=20 ---- -
r n(r) de P(dc.r) 0.8 A
0 1 0.3116 [t
1 7 0.1921 0.2247 L =320 ----
2 19 0.0912 0.1625 o er . LS80 T
3 27 0.0752 0.1211 = ., L=5120 —
2 33 0.0591 0.1340 v N
\/g 57 0.0355 0.1274 04 vy -
6 81 0.0285 0.0961 '
J8 93 0.0242 0.1025
0.2
We list, in the fourth column, the values @f(qg.,r) for
different radiir at the threshold .
Table Il shows, for a three-dimensional simple cubic lat- 0‘00 0

tice, the varioug values and the corresponding quantities
n(r), q., andp(q.,r). We notice that for both two and
three dimensions, the objects with finiteare percolating at FIG. 3. Variation of the maximum siz8,,(q) of the cluster is
lower p values than the point objects. The reason for thisplotted against, for the same. andr values as in Fig. 1.
becomes clear if we look at the equivalent problem of ob-
stacles. Here the sites are disallowed in clumps rather than iattice, independent of the radii
a homogeneous manner throughout the lattice, thereby leav- We have studied the nature of the decay of Fig. 3 ngar
ing more channels open for percolation. This effect is morene observe this to be power lawof the form
pronounced the higher the radius. For instance, in three di-
mensions one sees that for \/6 the lattice percolates even Sm(@)=(ge—q)~. (4)
with the removal of more than 90% of its sites. This also
brings out another interesting feature. The dependence oWe have estimated the exponetof the relation(4) for
p(g..r) onr is not monotonous; it exhibits occasional peaksboth two- and three-dimensional lattices with different radii
(in Table | one peak is at=2, and in Table Il two peaks can r. The fifth column of Table I lists thg values for different
be seen at=2 and\/8). r, for the two-dimensional lattice. The error margin for our
As discussed in the Introduction, the jump in the resistiv-estimates is-0.01. We have also included the corresponding
ity of Fe-doped ceramic Lg:Ca, ,gMnO; at about 4% con- €xponent for point objecftaken from[1]). We have not
centration of Fe ions may be interpreted as a percolatiofisted ourg estimates for a three-dimensional lattice because
transition for the polarons. By assuming a homogeneous anifie error margin was not within acceptable lirthe reason
uniform distribution of Fe ions, Ogalet al. have suggested is that one has to explore lattice sizes larger than250,
that the polaron radius is about one lattice unit. However, thavhich is the maximum size we could study due to limited
Fe ions are more likely to be randomly distributed in thecomputer resourclg).
lattice. This leaves many channels open for transport and We have also studied the distribution of average Size
thereby allows objects with bigger radii to pass through.of the clusters, excluding the infinite cluster,@andr are
Table Il (for the three-dimensional casedicates aj, value  varied. We defines, following Staufferet al.[1]. The prob-

of 0.04 for radiusr between 2 and/5. This suggests a po- ability that an arbitrary site belongs to any finite cluster in
laron radius slightly larger than two lattice unf0]. the lattice is¥ ¢ ngS, whereng is the number of the clusters of

As in the standard percolation problem we find clusters ofize s, normalized by the number of lattice sites. Theg
various sizes. We have investigated the distribution of maxi=nNsS/2nss is the probability that the cluster to which an
mum sizeS,, (normalized by the number of lattice sijesf ~ arbitrary allowed site belongs has a s&eThe average size
the cluster, averaged over lattice realizations, for differenfa is therefore
values ofg andr. Figure 3 plots the variation &,, with g,
for different lattice sizes and the radius=1, in a two- _ _ 2
dimensional lattice. The plot exhibits a sharp fall at the Sa_zs: Wes=2 | ns /2 nss). ®
thresholdq, for large L. This behavior remains essentially
similar for all other values of. A similar finite-size scaling As explained in Ref[1], we take Eq(5) as the definition of
behavior as for a percolating fractidgf(q) [Eq. (2)] is ob- our mean size and not the more familiar expression
served forS,,. We have estimated the corresponding scalingzn s/=ng, because in Eq(5) lattice sites, rather than the
exponentsa, b. a varies in essentially the same way in both clusters, are selected with equal probability. The average size
the dimensions as stated before for the cas€& @/). The S, shows a diverging trend neag from both sides. It also
exponenb, however, has nonzero valuds=0.14 for atwo-  exhibits finite-size scaling as fét(q) [Eq. (2)] andS,,. We
dimensional lattice, whereas=0.5 for three dimensional have estimated the scaling exponeais for S;. We find
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that a varies withr in the same way as in the earlier two universality class for finite-sized object case. Unfortunately,
cases ofF andS,,. Exponent takes the value-1.64 intwo  no definitive conclusion can be drawn at this stage.
dimensions,— 1.7 in three dimensions, irrespective of the In conclusion, we have, to our knowledge for the first
radiusr. time, investigated the percolation mechanism of finite-sized
We have investigated the nature of divergenc&phear objects. We observe a well-defined percolating threshold for

the thresholdy.. We find it to be apower lawof the type ~ Our model, in a two-dimensional square lattice and a three-
e * yp dimensional simple cubic lattice, the threshold depending on

S.(Q)=|g.—q| 7, (6)  the radius of the percolating objects. Based on this study, we
have made an estimate of the size of polarons that are be-
where y is the power-law exponent. In the last column of lieved to be carriers of transport in oxide perovsk[2s]. In
Table I we list the values ofy for variousr, for a two-  our model there exists a scaling due to the finite size of the
dimensional lattice. The corresponding error margitt3.1.  lattice, thereby allowing us to obtain important quantities for
We also show the value for point object cddg for com- infinite systems from finite samples. We have also obtained
parison. We have not shown the values for a three- two critical exponents, which characterize the universality
dimensional lattice, for reasons stated earlier. class for our system. We expect that our model will be useful
The question that remains to be answered is whether thig characterizing the problem of transport of finite-sized ob-
universality class for our model, indicated by the exponentgects, such as finite-sized excitations in solids and heavy ve-
B and v, is the same as, or distinct from, that of the pointhicles in a randomly grown habitation.
percolation case. The similarity of the values @fand v,
within their respective error margins, to thei=0 counter- One of the authorg§R.E.A.) acknowledges the Depart-
parts may suggest these two to be the same. However, postent of Science and Technologyndia) and the othetM.R.)
sibility exists that by taking larger lattice sizes and with con-acknowledges the University Grants Commissibrdia) for
sequent reduction in error one gets a quite distincfinancial assistance.
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