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Percolation of finite-sized objects on a lattice
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We study the percolation offinite-sizedobjects on two- and three-dimensional lattices. Our motivation
stems, on one hand, from some recent interesting experimental results on transport properties of impurity-
doped oxide perovskites, and on the other hand from the theoretical appeal that this problem presents. Our
system exhibits a well-defined percolation threshold. We estimate the size of magnetic polarons, believed to be
the carriers of the above-mentioned transport. We have also obtained two critical exponents for our model,
which characterize its universality class.@S1063-651X~98!06801-9#

PACS number~s!: 64.60.Ak, 64.60.Fr, 71.38.1i
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Over the last couple of decades percolation theory
generated lot of interest, both from theoretical as well
applicational points of view@1–12#. Percolation is an impor-
tant model exhibiting a second order phase transition w
the associated critical exponents@1,4,5#. It has also been suc
cessfully applied to transport and phase transitions in sev
physical systems in the presence of voids or impurit
@1,6,7,11,12#. In this paper we investigate the percolatio
mechanism of objectswith finite spatial extenton a lattice.
To the best of our knowledge this problem has not be
studied so far.

We are motivated for this type of study for the followin
reasons. Firstly, the problem has interesting physical ap
cation. Recent experimental investigations in transport pr
erties of Fe-doped La0.75Ca0.25MnO3 ceramics @13# have
thrown important light on the role of magnetic polarons th
are finite-sized objects@14–16#. In the lattice the Fe ions
occupy the Mn sites. There is a jump in the resistivity of t
system by a factor of about 80 at about 4% concentration
the Fe ions. Observations of isomer shift indicate that Fe i
are in the 31 state only and hence cannot be expected to
as a double exchange partner for the Mn41 ions. Thus the Fe
impurities will be prohibiting the transport of polarons. U
ing this physical picture the jump in resistivity may be inte
preted as a percolation transition for the polarons. Secon
our problem has its own theoretical appeal, which merit
thorough study. It is interesting to ask whether finiteness
size has any effect on critical exponents and hence on
versality classes. Finally, our model may have interest
application in the transport problem of vehicles of differe
sizes in a randomly grown habitation. The last problem
an additional feature that not only the objects themselves
also the obstacles have finite sizes. We shall see that in s
cases the two problems can be mapped into each other.

Our observations bring out a well-defined percolati
threshold probability for our model in both two and thr
dimension. We have analyzed our results using the ansa
scaling due to the finite lattice size. We also estimate so
critical exponents near the threshold.

The model we consider is as follows. We take a latt
and randomly disallow its sites with a probabilityq. We
define our percolating object as a spatially extended entit
linear dimensionr ~in lattice units! consisting ofn(r ) sites.
571063-651X/98/57~2!/1269~4!/$15.00
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We now say that such an object is allowed to percolate in
lattice only if none of itsn(r ) sites overlaps with any of the
disallowed sites. We then study the standard percola
problem for such an object.

One can also study the following complementary pro
lem. Let us place obstacles of linear sizer containingn(r )
sites with a suitably defined center at random locations w
probability q. We now treat the remaining sites as allow
and study the standard site percolation problem for po
objects. It is easy to see that the two problems are essent
equivalent under the following conditions: firstly, the cente
of the finite-sized objects or obstacles lie on a site; secon
the objects or obstacles themselves have the same symm
as that of the underlying lattice; and finally, the obstacles
allowed to overlap@17#. Numerically it is easier to study the
problem with obstacles, which we use for calculations in t
paper.

We now present our main results@18#. We consider a
two-dimensional square lattice and a three-dimensio
simple cubic lattice for our study. We restrict ourselves
the cases of objects with circular symmetry in two dime
sions and spherical symmetry in three dimensions, withr as
radius and center on a lattice site. We have used perio
boundary conditions for our system~otherwise finite-sized
objects are ill defined at and near the lattice boundary!. Dif-
ferent linear sizesL of the lattice are considered: for tw
dimensions, we have takenL510,20,40,80,160,320
640,1280,2560, and 5120, and for three dimensio
L510,20,40,80,160, and 250. We have varied probabilityq
between 0 and 1, and also used different values of the ra
r ~first column of Table I shows variousr values for two-
dimensional lattice!, starting with the nearest neighbor ca
(r 51 lattice unit!. Data are averaged over many realizatio
of randomly generated disallowed sites for each value ofq. It
is to be noted that no exact analysis is possible for our mo
in two or three dimensions, though some exact results ca
obtained for one-dimensional lattice and Bethe lattice@19#.

We define aclusteras a group of sites with the following
properties: centers of the percolating objects can be pla
on these sites, and these sites are connected through
nearest neighbors. We call a latticepercolatingfor a givenq
and r when there exists at least one cluster spanning
1269 © 1998 The American Physical Society
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lattice end to end~a so-called ‘‘infinite cluster’’!. We define
threshold probability qc such that forq.qc the lattice ceases
to be percolating. It is obvious thatqc is a function of the
radiusr .

Let F(q) denote the fraction of percolating realizatio
~those that support a spanning cluster!. Figures 1 and 2 show
respectively, for two and three dimensions, the variation
F(q) with the probabilityq, for different lattice sizesL and
radius r 51. Both plots exhibit an approach towards a st
function of the form

F~q!5H 1 for q,qc ,

0 for q.qc ,
~1!

TABLE I. The quantitiesn(r ), the number of sites in an objec
qc , the threshold probability,p(qc ,r ), the probability for the al-
lowed sites for the center of an object atqc , and b and g, the
critical exponents, for different radiir in a two-dimensional square
lattice. Error margins forqc , b, andg are60.0001, 60.01, and
60.1, respectively. Values for point object (r 50) are from Ref.
@1#.

r n(r ) qc p(qc ,r ) b g

0 1 0.5928 0.14 2.39
1 5 0.1153 0.5420 0.14 2.30
A2 9 0.0868 0.4417 0.14 2.29
2 13 0.0538 0.4873 0.15 2.22
A5 21 0.0406 0.4188 0.15 2.28
A8 25 0.0358 0.4020 0.14 2.39

FIG. 1. Variation of the percolating fractionF(q) is plotted
against the probabilityq, for lattice sizesL510, 20, 40, 80, 160,
320, 640, 1280, and 5120, and with radiusr 51 ~lattice unit!, for a
two-dimensional square lattice~plot for L52560 is not shown for
the sake of clarity!. Data are averaged over 100 000 realizations
L510, 50 000 forL520, 20 000 forL540, 10 000 forL580,
5000 for L5160, 2000 forL5320, 1000 forL5640, 500 for
L51280, and 50 forL55120.
f

pas L increases tò . This behavior remains essentially th
same for all other values ofr that we have considered. Th
data of both Fig. 1 and Fig. 2 are seen to obey a fin
~lattice! size scaling relation, near the thresholdqc , of the
type

F~q,L !→L2bG~Lauq2qcu!, ~2!

wherea andb are the scaling exponents. We have seen t
all the graphs of Fig. 1 collapse onto a single function, wh
is almost a step function of the form~1!, and the same is true
for the graphs of Fig. 2. This confirms the existence of sc
ing behavior~2!. We have obtained the exponentsa, b for
various radiir in both dimensions. Asr increases from 1 to
A8, a decreases monotonically from 0.8 to 0.7 for a tw
dimensional square lattice, whereas for a three-dimensio
simple cubic lattice it reduces from 1.17 to 0.96; the value
b remains zero for allr in both cases. We get an estimate
qc using this scaling scheme, asL→`. In the third column
of Table I we list these values for all finiter for the two-
dimensional lattice. There is one more way to obtainqc as
explained below. The graphs of Fig. 1 and Fig. 2 are
proximately linear for values ofF(q) between 0.3 and 0.6
We consider theq intercepts of these lines. The extrapolat
value of this intercept as 1/L→0 yieldsqc . These values are
almost identical to those listed in Table I, thereby exhibiti
internal consistency of our calculations.

One can calculate the probabilityp that a given lattice site
is allowed to be the center of a percolating object. Qu
simply, the required probability is

p~q,r !5~12q!n~r !, ~3!

whereq is our original probability andn(r ) is the number of
lattice sites contained in the object. The second column
Table I shows the values ofn(r ) for all r , in two dimensions.

r

FIG. 2. F(q) vs q plot for a three-dimensional simple cubi
lattice, forL510, 20, 40, 80, 160, and 250, withr 51. Realizations
taken are 100 000 forL510, 30 000 forL520, 10 000 forL
540, 2000 forL580, 200 forL5160, and 10 forL5250.
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57 1271PERCOLATION OF FINITE-SIZED OBJECTS ON A LATTICE
We list, in the fourth column, the values ofp(qc ,r ) for
different radii r at the thresholdqc .

Table II shows, for a three-dimensional simple cubic l
tice, the variousr values and the corresponding quantiti
n(r ), qc , and p(qc ,r ). We notice that for both two and
three dimensions, the objects with finiter are percolating at
lower p values than the point objects. The reason for t
becomes clear if we look at the equivalent problem of o
stacles. Here the sites are disallowed in clumps rather tha
a homogeneous manner throughout the lattice, thereby l
ing more channels open for percolation. This effect is m
pronounced the higher the radius. For instance, in three
mensions one sees that forr 5A6 the lattice percolates eve
with the removal of more than 90% of its sites. This al
brings out another interesting feature. The dependenc
p(qc ,r ) on r is not monotonous; it exhibits occasional pea
~in Table I one peak is atr 52, and in Table II two peaks ca
be seen atr 52 andA8).

As discussed in the Introduction, the jump in the resist
ity of Fe-doped ceramic La0.75Ca0.25MnO3 at about 4% con-
centration of Fe ions may be interpreted as a percola
transition for the polarons. By assuming a homogeneous
uniform distribution of Fe ions, Ogaleet al. have suggested
that the polaron radius is about one lattice unit. However,
Fe ions are more likely to be randomly distributed in t
lattice. This leaves many channels open for transport
thereby allows objects with bigger radii to pass throug
Table II ~for the three-dimensional case! indicates aqc value
of 0.04 for radiusr between 2 andA5. This suggests a po
laron radius slightly larger than two lattice units@20#.

As in the standard percolation problem we find clusters
various sizes. We have investigated the distribution of ma
mum sizeSm ~normalized by the number of lattice sites! of
the cluster, averaged over lattice realizations, for differ
values ofq andr . Figure 3 plots the variation ofSm with q,
for different lattice sizes and the radiusr 51, in a two-
dimensional lattice. The plot exhibits a sharp fall at t
thresholdqc for large L. This behavior remains essential
similar for all other values ofr . A similar finite-size scaling
behavior as for a percolating fractionF(q) @Eq. ~2!# is ob-
served forSm . We have estimated the corresponding scal
exponentsa, b. a varies in essentially the same way in bo
the dimensions as stated before for the case ofF(q). The
exponentb, however, has nonzero values:b50.14 for a two-
dimensional lattice, whereasb50.5 for three dimensiona

TABLE II. The quantitiesn(r ),qc ,p(qc ,r ), for different r val-
ues in a three-dimensional simple cubic lattice. Error margin forqc

is 60.0001.p(qc ,r ) for r 50 is from Ref.@1#.

r n(r ) qc p(qc ,r )

0 1 0.3116
1 7 0.1921 0.2247
A2 19 0.0912 0.1625
A3 27 0.0752 0.1211
2 33 0.0591 0.1340
A5 57 0.0355 0.1274
A6 81 0.0285 0.0961
A8 93 0.0242 0.1025
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lattice, independent of the radiir .
We have studied the nature of the decay of Fig. 3 nearqc .

We observe this to be apower lawof the form

Sm~q!}~qc2q!b. ~4!

We have estimated the exponentb of the relation~4! for
both two- and three-dimensional lattices with different ra
r . The fifth column of Table I lists theb values for different
r , for the two-dimensional lattice. The error margin for o
estimates is60.01. We have also included the correspond
exponent for point object~taken from @1#!. We have not
listed ourb estimates for a three-dimensional lattice beca
the error margin was not within acceptable limit~the reason
is that one has to explore lattice sizes larger thanL5250,
which is the maximum size we could study due to limit
computer resource@18#!.

We have also studied the distribution of average sizeSa
of the clusters, excluding the infinite cluster, asq and r are
varied. We defineSa following Staufferet al. @1#. The prob-
ability that an arbitrary site belongs to any finite cluster
the lattice is(snss, wherens is the number of the clusters o
size s, normalized by the number of lattice sites. Thenws
5nss/(nss is the probability that the cluster to which a
arbitrary allowed site belongs has a sizes. The average size
Sa is therefore

Sa5(
s

wss5( S nss
2Y ( nssD . ~5!

As explained in Ref.@1#, we take Eq.~5! as the definition of
our mean size and not the more familiar express
(nss/(ns , because in Eq.~5! lattice sites, rather than th
clusters, are selected with equal probability. The average
Sa shows a diverging trend nearqc from both sides. It also
exhibits finite-size scaling as forF(q) @Eq. ~2!# andSm . We
have estimated the scaling exponentsa, b for Sa . We find

FIG. 3. Variation of the maximum sizeSm(q) of the cluster is
plotted againstq, for the sameL and r values as in Fig. 1.
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1272 57R. E. AMRITKAR AND MANOJIT ROY
that a varies with r in the same way as in the earlier tw
cases ofF andSm . Exponentb takes the value21.64 in two
dimensions,21.7 in three dimensions, irrespective of th
radiusr .

We have investigated the nature of divergence ofSa near
the thresholdqc . We find it to be apower lawof the type

Sa~q!}uqc2qu2g, ~6!

whereg is the power-law exponent. In the last column
Table I we list the values ofg for various r , for a two-
dimensional lattice. The corresponding error margin is60.1.
We also show the value for point object case@1# for com-
parison. We have not shown theg values for a three-
dimensional lattice, for reasons stated earlier.

The question that remains to be answered is whether
universality class for our model, indicated by the expone
b and g, is the same as, or distinct from, that of the po
percolation case. The similarity of the values ofb and g,
within their respective error margins, to theirr 50 counter-
parts may suggest these two to be the same. However,
sibility exists that by taking larger lattice sizes and with co
sequent reduction in error one gets a quite disti
s

.
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t

os-
-
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universality class for finite-sized object case. Unfortunate
no definitive conclusion can be drawn at this stage.

In conclusion, we have, to our knowledge for the fir
time, investigated the percolation mechanism of finite-siz
objects. We observe a well-defined percolating threshold
our model, in a two-dimensional square lattice and a thr
dimensional simple cubic lattice, the threshold depending
the radius of the percolating objects. Based on this study,
have made an estimate of the size of polarons that are
lieved to be carriers of transport in oxide perovskites@21#. In
our model there exists a scaling due to the finite size of
lattice, thereby allowing us to obtain important quantities
infinite systems from finite samples. We have also obtain
two critical exponents, which characterize the universa
class for our system. We expect that our model will be use
in characterizing the problem of transport of finite-sized o
jects, such as finite-sized excitations in solids and heavy
hicles in a randomly grown habitation.

One of the authors~R.E.A.! acknowledges the Depart
ment of Science and Technology~India! and the other~M.R.!
acknowledges the University Grants Commission~India! for
financial assistance.
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